
Adaptive Bulk Search: SolvingQuadratic Unconstrained Binary
Optimization Problems on Multiple GPUs

Ryota Yasudo

yasudo@cs.hiroshima-u.ac.jp

Hiroshima University

Hiroshima, Japan

Koji Nakano

nakano@cs.hiroshima-u.ac.jp

Hiroshima University

Hiroshima, Japan

Yasuaki Ito

yasuaki@cs.hiroshima-u.ac.jp

Hiroshima University

Hiroshima, Japan

Masaru Tatekawa

Masaru.Tatekawa@nttdata.com

NTT DATA Corporation

Tokyo, Japan

Ryota Katsuki

Ryota.Katsuki@nttdata.com

NTT DATA Corporation

Tokyo, Japan

Takashi Yazane

Takashi.Yazane@nttdata.com

NTT DATA Corporation

Tokyo, Japan

Yoko Inaba

Yoko.Inaba@nttdata.com

NTT DATA Corporation

Tokyo, Japan

ABSTRACT
The quadratic unconstrained binary optimization (QUBO) is re-

cently gathering attention in conjunction with quantum annealing

(QA), since it is equivalent to finding the ground state of an Ising

model. Due to the limitation of current QA systems, classical com-

puters may outperform them. Researchers have thus been proposed

to solve QUBO on FPGAs, GPUs, and special purpose processors. In

this paper, we propose an adaptive bulk search (ABS), a framework

for solving QUBO that can perform many searches in parallel on

multiple GPUs. It supports fully-connected Ising models with up

to 32k spins and 16-bit weights. In our ABS, a CPU host performs

genetic algorithm (GA) while GPUs asynchronously perform local

searches. A bottleneck for solving QUBO exists in the evaluation

of the energy function, which requires O(n2) computational cost

for each solution. We show this can be reduced to O(1) in our ABS.

The experimental results show that, with four NVIDIA GeForce

RTX 2080 Ti GPUs, our framework can search up to 1.24 × 1012

solutions per second. We also show that our system quickly solves

maximum cut and traveling salesman problems.

CCS CONCEPTS
• Theory of computation→ Optimization with randomized
search heuristics; • Computing methodologies → Graphics
processors; •Computer systems organization→Quantum com-
puting.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Ising model, quantum annealing, QUBO, combinatorial optimiza-

tion, GPGPU

ACM Reference Format:
Ryota Yasudo, Koji Nakano, Yasuaki Ito, Masaru Tatekawa, Ryota Katsuki,

Takashi Yazane, and Yoko Inaba. 2020. Adaptive Bulk Search: Solving Qua-

dratic Unconstrained Binary Optimization Problems on Multiple GPUs. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Quantum computation has recently attracted attention in the field

of both academic [14] and industrial [2] communities. It can be

divided into two main types: universal quantum computing [4] and

quantum annealing (QA) [11, 17]. QA, on which we focus in this

paper, is specially designed for solving combinatorial optimization

problem based on statistical mechanical models such as Ising mod-

els. The Isingmodel simply represents ferromagnetism consisting of

spins S = (s0, s1, . . . , sn−1) where si = ±1, interaction Ji j between
si and sj , and the external magnetic field h0,h1, . . . ,hn−1. The goal
of QA is to find the ground state of the Ising model, i.e., the state of

the spins that minimizes the HamiltonianH = −
∑

Ji jsisj −
∑
hisi .

The Ising model has a potential for solving a wide range of com-

binatorial optimization problems, including Karp’s 21 NP-complete

problems [20, 21], real-world applications [23, 28], and machine

learning [8, 9]. For solving these problems, QA has already been

developed by D-Wave systems [16]. However, a current commercial

system called D-Wave 2000Q provides a limited number of spins

(2048 spins) and sparse interaction (given by a Chimera graph).

In the graph, a vertex and an edge denote a spin and an interac-

tion, respectively. There exist no interactions if two spins are not

connected in the graph. Hence, minor-embedding, which is NP-

hard [5], is needed for fitting the Chimera graph. If the interactions

are fully-connected, D-Wave 2000Q solves at most 64-spin problems.

In addition, the ground state is not always attained due to environ-

mental effects [1]. A few studies suggest that classical simulated

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Ryota Yasudo, Koji Nakano, Yasuaki Ito, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, and Yoko Inaba

annealing is better than QA [3]. It is thus difficult to obtain good

solutions for practical problems at least now.

The optimization problem for the Ising model can equivalently

be converted into the quadratic unconstrained binary optimization
(QUBO) problem, and vice versa. QUBO has been studied from

1960s [12] in the field of combinatorial optimization. QUBO is

known as NP-hard [26]. While exact methods are studied, the size

of problems is restricted; for example, up to 200 bits [19]. We hence

need heuristic algorithms such as simulated annealing (SA) and

genetic algorithm (GA). Many researchers and developers recently

study on solving QUBO or Ising models on special purpose proces-

sors and hardware accelerators such as field programmable gate

arrays (FPGAs) and graphical processing units (GPUs).

Inagaki et al. proposed a coherent Ising machine, an Ising model

solver based on photonic technologies [15]. Experimental results

are currently reported for small Ising models with 2000 spins. Mat-

subara et al. proposed to use an FPGA that efficiently performs a

Markov-chain Monte-Carlo search [22]. It supports only 1,024 spins

and attains 20.4G search rate, which our proposed system in this

paper outperforms by 60×. Yamaoka et al. proposed Ising computer

using CMOS circuits [30]. It supports 20k (=20,480) spins, but the

possible interactions can have only three values (+1, 0, −1). Goto et
al. proposed a simulated bifurcation (SB), which is an alternative

algorithm to conventional QA. They implement them on a GPU

cluster [13] and an FPGA [29]. Okuyama et al. proposed momen-

tum annealing (MA) [25], which updates all spins simultaneously

by converting an Ising model to bipartite graphs with two times

larger spins. This means that the required memory size for storing

interactions increases by two times. MA also requires mapping to a

bipartite graph and carefully setting parameters called momentum

coupling.

An instance of a QUBO problem is given by a weight matrix
W = (Wi j) (0 ≤ i, j < n), an n × n symmetric matrix of numbers

called weights such thatWi j =Wji holds. Each bit corresponds to a

spin of the Isingmodel, but its value is 0 or 1, instead of+1 or−1. The

objective of the QUBO is to find an n-bit vector X = x0x1 · · · xn−1
such that the energy function E(X) is minimized for given weight

matrix. The energy function is defined as

E(X) B XTWX =
∑

0≤i , j<n
Wi jxix j . (1)

Figure 1 shows an example of QUBO. Eq. (1) clearly suggests that the

computation of the energy requires O(n2) computational cost, i.e.,

the total number of executed instructions. Thus, the computational

cost prevents us from solving QUBO.

In this paper, we consider an algorithm that enables us to reduce

the computational cost to O(1) per one solution. We call the com-

putational cost for evaluating the energy per one solution search
efficiency. The idea here is to compute the energy of a neighbor

solution based on the change of the energy. For later references,

we define two functions. For an n-bit vector X = x0x1 · · · xn−1,
let flipk (X) be a function that returns an n-bit vector obtained by

flipping the k-th bit of X , i.e.,

flipk (X) B x0x1 · · · xk−1xkxk+1 · · · xn−1. (2)

1 −1 2 −2

−1 5 3 4

2 3 −3 −5

−2 4 −5 4

e.g.,

weight matrix W
0 1 2 3

0

1

2

3

E(1011) = 1 + (�3) + 4 + 2(2 + (�2) + (�5))

= �8
<latexit sha1_base64="dpuGg8LS9yjqpR9aDkZbVyx1DoI=">AAACEHicbZDLSgMxFIYz9VbrbdSlm8FinaG0TKYVuykURXBZwV6gHUomTdvQzIUkI5TSR3Djq7hxoYhbl+58G9PLQlsPJHz8/zkk5/ciRoW07W8tsba+sbmV3E7t7O7tH+iHR3URxhyTGg5ZyJseEoTRgNQklYw0I06Q7zHS8IbXU7/xQLigYXAvRxFxfdQPaI9iJJXU0c9vTGhDaGXKMGvmCla2mHVMR6FjqevCstrtVKacK3X0tJ23Z2WsAlxAGiyq2tG/2t0Qxz4JJGZIiBa0I+mOEZcUMzJJtWNBIoSHqE9aCgPkE+GOZwtNjDOldI1eyNUJpDFTf0+MkS/EyPdUp4/kQCx7U/E/rxXLXskd0yCKJQnw/KFezAwZGtN0jC7lBEs2UoAwp+qvBh4gjrBUGaZUCHB55VWoO3lYyDt3xXTlahFHEpyAU2ACCC5BBdyCKqgBDB7BM3gFb9qT9qK9ax/z1oS2mDkGf0r7/AHDVpWA</latexit>

E(X) = XTWX
<latexit sha1_base64="mm7NX63KDL9zzvr4bAunKV79zeI=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2WmCroRiiK4rNDHQDuWTJq2oUlmSDJCGQb8FTcuFHHrd7jzb8y0s9DWA4HDOfdyT04QMaq043xbS8srq2vrhY3i5tb2zq69t99SYSwxaeKQhdILkCKMCtLUVDPiRZIgHjDSDsY3md9+JFLRUDT0JCI+R0NBBxQjbaSefXhb9k6vvIeky5EeSZ400rTt9eySU3GmgIvEzUkJ5Kj37K9uP8QxJ0JjhpTquE6k/QRJTTEjabEbKxIhPEZD0jFUIE6Un0zjp/DEKH04CKV5QsOp+nsjQVypCQ/MZBZSzXuZ+J/XifXg0k+oiGJNBJ4dGsQM6hBmXcA+lQRrNjEEYUlNVohHSCKsTWNFU4I7/+VF0qpW3LNK9f68VLvO6yiAI3AMysAFF6AG7kAdNAEGCXgGr+DNerJerHfrYza6ZOU7B+APrM8fiI+VOg==</latexit>

Figure 1: An example of a QUBO problem with n = 4.

For a bit x , let φ(x) be a function defined as

φ(x) B

{
+1 if x = 0,

−1 if x = 1.
(3)

Clearly,φ(x) = 1−2x holds. Let us now consider∆k (X)= E(flipk (X))
−E(X), i.e., the amount of change of the energy if the k-th bit in X
is flipped. When xk is flipped, the energy changes byWki +Wik =

2Wki for i , k and xi = 1, and also byWkk . Thus we can write

∆k (X) = φ(xk)

(
2

∑
i,k

Wkixi +Wkk

)
. (4)

The idea here is to retain the values of ∆k (X) for all k (0 ≤ k <
n). Consequently we can compute all of the energy E(flip

0
(X)),

E(flip
1
(X)), . . ., E(flipn−1(X)) for all of the n neighbor solutions by

E(flipk (X)) = E(X) + ∆k (X). (5)

The value of ∆i (flipk (X)) can be computed by

∆i (flipk (X)) =

{
−∆i (X) if k = i,

∆i (X) + 2Wikφ(xi)φ(xk) if k , i .
(6)

The derivation of this formula will be shown in Section 2. In this

paper, we propose an algorithm where this O(1) search efficiency

is always possible while it can be combined with GA.

In our algorithm, the evaluation of the energy is performed only

by GPUs in parallel. A GPU is a specialized circuit originally de-

signed to accelerate computation for building and manipulating

images. Latest GPUs are designed for general-purpose computing,

and hence they are now used for accelerating various applications.

Since GPU architecture is built around a scalable array of multi-

threaded processors, each thread can compute the value of ∆i (X) by
Eq. (6) in parallel, and consequently the time complexity becomes

small. Moreover, all of the values are stored in a register file, which

keeps the access latency low. Thus GPU can efficiently perform a

local search.

Based on the algorithm above, we propose an adaptive bulk search
(ABS), a framework for solving QUBO consisting of a CPU host and

multiple GPUs. The main concept of ABS is to perform a genetic

Adaptive Bulk Search: SolvingQuadratic Unconstrained Binary Optimization Problems on Multiple GPUs Conference’17, July 2017, Washington, DC, USA

algorithm and local searches in bulk by exploiting GPU resources.

Starting from random bit vectors, a CPU performs genetic algorithm

for a global search and asks GPUs to perform local searches with

selected solutions (called target solutions). A GPU performs a large

number of local searches for the target solutions in parallel, and

returns the best-found solutions. Here, we can flip arbitrary bits on

the basis of the values of ∆i (X) for all i (0 ≤ i < n) with any policy,

including a greedy algorithm and SA. Thus, we can adaptively

change the local search algorithm. Combining GA and a local search

makes it impossible to keep O(1) search efficiency, because iterative

local search steps must start with different solutions. To avoid

this drawback, we propose a straight search, a search algorithm

from generation to generation. In addition, a host never computes

the energy function. In this way our ABS maintains O(1) search

efficiency. Our implementation on NVIDIA GeForce RTX 2080 Ti

GPUs supports any QUBO problems with up to 32k variables (bits)

and 16-bit weights. We exploit GPU resources so that the occupancy

becomes 100% and show that our ABS can search up to 1.24T (1.24×

10
12
) solutions per second.

The structure of the paper is as follows. Section 2 discusses al-

gorithms for solving QUBO by introducing search efficiency. After

we show a naive local search algorithm, we improve the search

efficiency, which will finally be reduced to O(1). We also propose

a method for combining genetic algorithm and local search algo-

rithms. In Section 3, we show the implementation of the proposed

ABS written in CUDA C, which exploits resources of GPU archi-

tecture. The proposed system is experimentally evaluated in terms

of time-to-solution and throughput in Section 4. Finally Section 5

concludes the paper.

2 ALGORITHMS
In this section, we propose a local search algorithm, a genetic al-

gorithm, and their combination. Asymptotic analysis using search

efficiency shows the computational cost of our algorithm.

2.1 Local search algorithm
Let us start with a naive local search algorithm. Again, we use a

function flipk (X) that returns an n-bit vector obtained by flipping

the k-th bit of X = x0x1 · · · xn−1. Since the Hamming distance

between X and flipk (X) is one, we regard flipk (X) as a neighbor
solution of X . Using this neighbor function, we can perform a local

search shown in Algorithm 1.

The accept function depends on metaheuristics. Simulated an-

nealing (SA) is one of thewell-studiedmetaheuristics. In SA, a neigh-

bor solution is probabilistically accepted according to the amount

of the change of the energy, denoted by ∆E [18]. In Algorithm 1,

∆E is equal to E(flipk (X))−E(X). The acceptance probability p(∆E)
is

p(∆E) =

{
1 if ∆E ≤ 0,

exp(−∆E/kBt) if ∆E > 0,
(7)

where t is temperature and kB is some constant (in nature, Boltz-

mann’s constant). The temperature t is initially set to be high and

reduced gradually. To obtain good solutions, we must carefully set

such parameters and functions for cooling temperature.

Algorithm 1 A naive local search with O(n2) search efficiency

1: E(X) ←
∑
0≤i , j<nWi jxix j

2: E(B) ← E(X) ▷ best energy

3: loop
4: randomly select a bit xk (0 ≤ k < n) in X = x0x1 · · · xn−1.
5: generate a neighbor solution flipk (X) = X ′.
6: E(flipk (X)) ←

∑
0≤i , j<nWi jx

′
ix
′
j .

7: if accept(E(X), E(flipk (X))) == true then
8: X ← flipk (X)
9: if E(X) < E(B) then
10: B ← X ▷ update best solution

11: end if
12: end if
13: end loop
14:

15: function accept(E(X), E(flipk (X)))
16: return true or false ▷ depending on metaheuristics

17: end function

Let us evaluate the computational cost for the SA. Letm be the

number of iterations of the search step. For a given n-bit vector X ,

the value of E(X) can be computed with O(n2) computational cost

by evaluating Eq. (1). Hence, the SA withm search steps requires

O(n2m) computational cost. Next, let us introduce a performance

index for evaluating the performance of search algorithms called a

search efficiency.

Definition 1. Search efficiency is the computational cost divided
by the number of evaluated solutions. In other words, it denotes the
expected number of operations necessary to evaluate the energy for
one solution.

In a naive local search, O(n2) computational cost is required for

each solution. Thus, we have

Lemma 1. The search efficiency of a local search in Algorithm 1 is
O(n2).

Suppose that we know the value of energy function E(X) for an
instance of QUBO withW = (Wi j) (0 ≤ i, j < n) and an n-bit vector
X = x0x1 · · · xn−1. Let us consider the value of E(flipk (X)), i.e., the
energy when xk is flipped. This value depends on the value of xk .
If xk = 0, then the energy increases byWkk ,Wk j , andWjk for all j
such that j , k and x j = 1. Thus, if xk = 0, then E(flipk (X)) can be

written as

E(flipk (X)) = E(X) + 2
∑
j,k

Wk jx j +Wkk . (8)

Similarly, if xk = 1, then the energy increases by −Wkk , −Wk j , and

−Wjk for all k such that j , k and x j = 1. Thus E(flipk (X)) can be

written as

E(flipk (X)) = E(X) − 2
∑
j,k

Wk jx j −Wkk . (9)

Combining Eqs. (8) and (9), we have

E(flipk (X)) = E(X) + φ(xk)
©­«2

∑
j,k

Wk jx j +Wkk
ª®¬ . (10)

Conference’17, July 2017, Washington, DC, USA Ryota Yasudo, Koji Nakano, Yasuaki Ito, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, and Yoko Inaba

Recall that φ(x) is a function φ(x) : {0, 1} → {+1,−1}. Using

Eq. (10), we can compute E(flipk (X)) with O(n) computational cost

if we know E(X) in advance. Therefore the SA withm search steps

can evaluate E(X) for at mostm + 1 solutions X with O(n2 +mn)
computational cost.

This difference computation reduces computational cost from

Algorithm 1 to Algorithm 2. Since the algorithm can searchm + 1
solutions with O(n2 +mn) computational cost, we have

Lemma 2. The search efficiency of a local search in Algorithm 2
withm search steps is

O(n2 +mn)

m + 1
= O

(
n +

n2

m

)
.

Algorithm 2 A local search with O(n + n2

m) search efficiency

1: E(X) ←
∑
0≤i , j<nWi jxix j

2: E(B) ← E(X) ▷ best energy

3: loop
4: randomly select a bit xk (0 ≤ k < n) in X = x0x1 · · · xn−1.
5: generate a neighbor solution flipk (X).

6: E(flipk (X)) ← E(X) + φ(xk)
(
2

∑
j,kWk jx j +Wkk

)
.

7: if accept(E(X), E(flipk (X))) == true then
8: X ← flipk (X)
9: if E(X) < E(B) then
10: B ← X ▷ update best solution

11: end if
12: end if
13: end loop
14:

15: function accept(E(X), E(flipk (X)))
16: return true or false ▷ depending on metaheuristics

17: end function

Next, we reduce the search efficiency by computing E(flipi (X))

for all i (0 ≤ i < n). From Eq. (10), it takes O(n) × n = O(n2)
computational cost to compute all of them. To reduce the cost, we

retain

∆k (X) B E(flipk (X)) − E(X) (11)

=

{
2

∑
j,kWk jx j +Wkk if k = 0,

−2
∑
j,kWk jx j −Wkk if k = 1

(12)

= φ(xk)
©­«2

∑
j,k

Wk jx j +Wkk
ª®¬ . (13)

for all k (0 ≤ k < n). Obviously ∆k (X) denotes the change of energy
after we flipxk inX . Since E(flipk (X)) = E(X)+∆k (X) holds, we can
compute the energy function E(flipk (X)) for all k (0 ≤ k < n) with
O(1) ×n = O(n) computational cost if we know E(X) and ∆k (X) in
advance. In the following, we show the algorithm to achieve this.

Suppose that we know the value of ∆i (X) for all i (0 ≤ i < n).
Now let us consider ∆i (flipk (X)), i.e., the change of ∆i after we flip
xk in X . This value depends on the situations which can be divided

into the following five cases.

Case 1: i = k . In this case, ∆i (flipk (X)) is clearly equal to −∆i (X),
regardless of the value of xi (= xk).

In the remaining cases, we assume that i , k holds.

Case 2: xi = 0, xk = 0 → 1. Before xk is flipped,Wik andWki
never affect ∆i ; however, after xk is flipped to be 1, they start to

affect ∆i . Thus, we have

∆i (flipk (X)) = ∆i (X) + 2Wik . (14)

Case 3: xi = 0, xk = 1 → 0. Contrary to Case 2,Wik andWki
cease to affect ∆i after xk is flipped. Thus, we have

∆i (flipk (X)) = ∆i (X) − 2Wik . (15)

Case 4: xi = 1, xk = 0→ 1. If xi = 1, then we just have to invert

signs in Eq. (14) or (15); in Case 4, Eq. (14) because xk is the same

as Case 2. As a result, Case 4 satisfies Eq. (15).

Case 5: xi = 1, xk = 1→ 0. Contrary to Case 4, Case 5 satisfies

Eq. (14).

In summary, Eq. (14) holds if xi = xk , and Eq. (15) holds if

xi , xk . Thus, we can write

∆i (flipk (X)) = ∆i (X) + 2Wikφ(xi)φ(xk). (16)

Note that φ(x)2 = 1 and φ(x)φ(x) = −1 hold. To exploit Eq. (16),

let us consider to start initialization with a zero vector 0 = 00 · · · 0.

Clearly, E(0) = 0 and ∆i (0) =Wii hold, and thus they can be com-

puted in O(n). Subsequently, we can search at most n solutions

until a solution becomes the given solution X ′ as shown in Al-

gorithm 3. Since the computation for n solutions until an initial

solution and subsequentm solutions respectively require O(n2) and
O(mn) computational costs, we have

Lemma 3. The search efficiency of a local search in Algorithm 3
withm search steps is

O(n2 +mn)

n +m
= O(n).

As we stated above, one of the drawbacks of a conventional local

search is that a neighbor solution would hardly be accepted, espe-

cially if a solution is near local minimum. This drawback decreases

the number of flips per unit time. To avoid this, we force to flip a bit

in every iteration. Fortunately, it is easy to do this by using ∆i again.
Suppose that we know ∆i for all i (0 ≤ i < n). This means that we

know n neighbor solutions, and thus we can arbitrary choose one of

them on the basis of their energy. From E(flipj (X)) = E(X)+∆j (X),
we can evaluate the energy of n neighbor solutions such that 1 bit is

flipped with O(n) computational cost. In the initialization step and

m iterations of the search step, the energy of at most (n +m)n solu-

tions is evaluated with O(n2 +mn) computational cost. Ultimately,

we can design Algorithm 4, and we have

Theorem 1. The search efficiency of the local search in Algorithm 4
withm search steps is

O(n2 +mn)

n2 +mn
= O(1).

In Algorithm 4, we can use any selection policy. In this paper, we

adopt the following selection policy shown in Figure 2. The main

concept is extracting some bits from a bit vector and then flipping

a bit xi with the minimum ∆i . It forces a bit flip obviously. If the

Adaptive Bulk Search: SolvingQuadratic Unconstrained Binary Optimization Problems on Multiple GPUs Conference’17, July 2017, Washington, DC, USA

Algorithm 3 A local search with O(n) search efficiency

Require: X = 00 · · · 0 and di = 0 for all i (0 ≤ i < n) ▷ di retains
∆i (X)

1: E(X) ← 0

2: E(B) ← E(X) ▷ best energy

3: repeat
4: select a k-th bit such that x ′k = 1.

5: for all i (0 ≤ i < n and i , k) do
6: di ← di + 2Wikφ(xi)φ(xk)
7: end for
8: E(X) ← E(X) + dk
9: dk ← −dk
10: xk ← xk = 1 − xk ▷ flip xk
11: if E(X) < E(B) then
12: B ← X ▷ update best solution

13: end if
14: until X = X ′

15: loop
16: randomly select a bit xk (0 ≤ k < n) in X = x0x1 · · · xn−1.
17: generate a neighbor solution flipk (X).
18: for i ← 0,n − 1 do
19: di ← di + 2Wikφ(xi)φ(xk)
20: end for
21: evaluate E(flipk (X)).
22: if accept(E(X), E(flipk (X))) == true then
23: X ← flipk (X)
24: if E(X) < E(B) then
25: B ← X ▷ update best solution

26: end if
27: end if
28: end loop
29:

30: function accept(E(X), E(flipk (X)))
31: return true or false ▷ depending on metaheuristics

32: end function

number of extracted bits is n (i.e., all of the bits in a bit vector),

the algorithm becomes the same as a greedy algorithm because

the best neighbor solution is always selected. In contrast, if the

number of extracted bits is 1, a bit is selected randomly. Thus, the

number l of extracted bits is similar to the temperature of SA. Note,

however, that the larger l corresponds to the lower temperature.

As with parallel tempering [10], we can set a different temperature

for each search. Extracted bits can be randomly selected, but we

deterministically select them by introducing an offset. When an

offset is a, the bits xa, xa+1, . . . , xa+l−1 are selected, and then the

offset changes to (a + l) mod n. This algorithm requires no ran-

dom number generation unlike conventional SA, and consequently

the computational complexity are small, while it provides good

solutions because it is combined with GA introduced below and

GPU-based highly parallel processing. Note that, while this policy

compares l solutions, n solutions are evaluated at once and a so-

lution other than compared l solutions can be selected if the best

solution is updated by selecting it.

Algorithm 4 Proposed local search with O(1) search efficiency

Require: X = 00 · · · 0 and di = 0 for all i (0 ≤ i < n) ▷ di retains
∆i (X)

1: E(X) ← 0

2: E(B) ← E(X) ▷ best energy

3: repeat
4: select a k-th bit such that x ′k = 1.

5: for all i (0 ≤ i < n and i , k) do
6: di ← di + 2Wikφ(xi)φ(xk)
7: if E(X) + di < E(B) then
8: B ← flipi (X) ▷ update best solution

9: end if
10: end for
11: E(X) ← E(X) + dk
12: dk ← −dk
13: xk ← xk = 1 − xk ▷ flip xk
14: until X = X ′

15: loop
16: arbitrarily select a bit xk (0 ≤ k < n) in X ▷ based on

selection policy

17: for all i (0 ≤ i < n and i , k) do
18: di ← di + 2Wikφ(xi)φ(xk)
19: if E(X) + di < E(B) then
20: B ← flipi (X) ▷ update best solution

21: end if
22: end for
23: E(X) ← E(X) + dk
24: dk ← −dk
25: xk ← xk = 1 − xk ▷ flip xk
26: end loop

0010110110011100

offset

0010100110011100

0010100110011100

offset

flip x5
<latexit sha1_base64="V8Zz5dT7U36bsgpsXpdfXSoQ90Q=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mqoseiF48V7Ae0IWy2m3bpZhN2J6Ul1F/ixYMiXv0n3vw3btsctPXBwOO9GWbmBYngGhzn2yqsrW9sbhW3Szu7e/sH9uFRU8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJv5rRFTmsfyESYJ8yLSlzzklICRfNvuAhtDFgqePE3x2L/y7bJTcebAq8TNSRnlqPv2V7cX0zRiEqggWndcJwEvIwo4FWxa6qaaJYQOSZ91DJUkYtrL5pdP8ZlRejiMlSkJeK7+nshIpPUkCkxnRGCgl72Z+J/XSSG88TIukxSYpItFYSowxHgWA+5xxSiIiSGEKm5uxXRAFKFgwiqZENzll1dJs1pxLyrVh8ty7TaPo4hO0Ck6Ry66RjV0j+qogSgaoWf0it6szHqx3q2PRWvBymeO0R9Ynz/F6pO9</latexit>

update o↵set
<latexit sha1_base64="t/S8sF3RNAGvZ42dGljSOzObsSA=">AAAB/XicbVDJSgNBEO2JW4zbuNy8DAbBU5iJgh6DXjxGMAskQ+jpqUma9Cx014hxiP6KFw+KePU/vPk3dpI5aOKDgsd7VVTV8xLBFdr2t1FYWl5ZXSuulzY2t7Z3zN29popTyaDBYhHLtkcVCB5BAzkKaCcSaOgJaHnDq4nfugOpeBzd4igBN6T9iAecUdRSzzzoItxjliY+RXiMg0ABjntm2a7YU1iLxMlJmeSo98yvrh+zNIQImaBKdRw7QTejEjkTMC51UwUJZUPah46mEQ1Budn0+rF1rBXfCmKpK0Jrqv6eyGio1Cj0dGdIcaDmvYn4n9dJMbhwMx4lKULEZouCVFgYW5MoLJ9LYChGmlAmub7VYgMqKUMdWEmH4My/vEia1YpzWqnenJVrl3kcRXJIjsgJccg5qZFrUicNwsgDeSav5M14Ml6Md+Nj1low8pl98gfG5w/OoJYY</latexit>

…

min(�4,�5,�6,�7) = �5
<latexit sha1_base64="jvLTwkG6XMOOVwSgqjtfwc+ampg=">AAACIHicbZDLSsNAFIYn9VbrLerSzWARKkhJarVuhKIuXFawF2hCmEyn7dDJJMxMhBL6KG58FTcuFNGdPo3TNhRtPTDw8f/ncOb8fsSoVJb1ZWSWlldW17LruY3Nre0dc3evIcNYYFLHIQtFy0eSMMpJXVHFSCsSBAU+I01/cD32mw9ESBryezWMiBugHqddipHSkmdWnIDygnNDmEJe+QSmdDaj8xlVjuHlzPfMvFW0JgUXwU4hD9Kqeean0wlxHBCuMENStm0rUm6ChKKYkVHOiSWJEB6gHmlr5Cgg0k0mB47gkVY6sBsK/biCE/X3RIICKYeBrzsDpPpy3huL/3ntWHUv3ITyKFaE4+mibsygCuE4LdihgmDFhhoQFlT/FeI+EggrnWlOh2DPn7wIjVLRPi2W7sr56lUaRxYcgENQADaogCq4BTVQBxg8gmfwCt6MJ+PFeDc+pq0ZI53ZB3/K+P4BEK6gaw==</latexit>

Figure 2: A selection policy without random numbers used
in our ABS.

2.2 Genetic algorithm
2.2.1 Genetic algorithm in a host. A genetic algorithm (GA) is one
of the well-known metaheuristics inspired by biological evolutions

Conference’17, July 2017, Washington, DC, USA Ryota Yasudo, Koji Nakano, Yasuaki Ito, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, and Yoko Inaba

with mutations, crossover, and selection. Several solutions are rep-

resented as a genetic representation, which is typically a bit vector,

and each solution has fitness. The average fitness increases as with
natural selection. A GA generally consists of the following steps.

Step 1: Initialize solutions.
Step 2: Compute fitness of the solutions.

Step 3: Perform mutation, crossover, or copy for the next genera-

tion.

Step 4: Go back to Step 2.

A solution of QUBO is originally a bit vector, and hence the

solution itself can be used for a genetic representation. A fitness

corresponds to the energy function. A mutation generates a new

solution from one selected solution with flipping some random bits.

A crossover generates a new solution from two solutions called

parents so that each bit is randomly selected from either of the

parents.

We combine GAwith a local search; a host CPU and a device GPU

perform GA and local search, respectively. After a new solution X
is generated, typical GA adopts it for the next generation as it is.

However, we can obtain better solutions similar toX by using a local

search. Thus, we perform a local search between two generations

and consequently the objective function improves. Furthermore,

a CPU does not need to compute the fitness, because a CPU just

stores the solution to a target buffer.

One of the drawbacks of GA is that it may lead to premature

convergence when an extremely good solution is found, especially

it is combined with a local search. Thus, we keep the solutions

distinct to avoid premature convergence. After a local search ends,

the best solution during the search is inserted only if the same

solution does not exist in the solution pool. Hence, a solution pool

is always sorted by the value of energy, and binary search checks

whether the same solution exists and computes the index to insert

with O(logn) computational cost. At this point, the worst solution

in the solution pool is replaced with the new solution.

2.2.2 Straight search in a GPU. Unfortunately, combining GA and

a local search prevents the difference computation of the energy de-

scribed in Section 2.1. This is because a local search must start with

a new solution generated by GA. Thus, thirdly, we propose an algo-

rithm called a straight search to enable the difference computation.

Suppose that there is a known solution X and a new solution X ′

Starting from a known solutionX , it flips a bit so that the Hamming

distance to X ′ decreases until X becomes the same as X ′. Thus,
the number of flips corresponds to the Hamming distance between

X and X ′. Since it starts from a known solution, the difference

computation is possible, and besides a local search is performed

at the same time. A bit k is greedily selected so that ∆k becomes

minimum. A straight search also enables to escape from a local

minimum because returning to the visited solutions is prohibited.

In other words, a straight search generalizes the first half of Algo-

rithm 4 so that X is arbitrary. Figure 3 illustrates a concept of a

straight search, and a pseudo-code is shown in Algorithm 5.

In our ABS, each CUDA block performs straight search and a

local search alternately as shown in Figure 4.

Algorithm 5 Straight search

Require: X = x0x1 · · · xn−1 and X
′ = x ′

0
x ′
1
· · · x ′n−1

1: E(B) ← E(X)
2: repeat
3: compute minimum ∆k such that xk , x ′k . ▷ greedily select

a bit

4: for all i (0 ≤ i < n and i , k) do
5: di ← di + 2Wikφ(xi)φ(xk)
6: end for
7: E(X) ← E(X) + dk
8: dk ← −dk
9: xk ← xk = 1 − xk ▷ flip xk
10: if E(X) < E(B) then
11: B ← X ▷ update best solution

12: end if
13: until X = X ′

X X’

≈

≈

≈
❌

prohibited

the best neighbor is selected

Figure 3: An overview of a straight search from X to X ′ such
that the Hamming distance between them is four.

3 IMPLEMENTATION
Figure 5 illustrates an overview of our proposed system. It consists

of a CPU host and multiple GPUs. Target and solution buffers are

located in a global memory that can be accessed by both a host

and a device, and thus they can exchange data via this memory. In

general, the host manages the solutions and stores a target solu-
tion T generated by GA, and a CUDA block in a GPU executes a

local search from one of the target solutions and stores the best-

found solution B and its energy EB . A host and a device do not

communicate with each other directly, but rather exchange data

indirectly via a global memory. As a result, each CUDA block runs

asynchronously, and hence the overhead for synchronization is

avoided. In the following we describe the details of the system.

3.1 CPU Host
A CPU host manages a solution pool consisting ofm solutions X0,

X1, . . ., Xm−1 and corresponding values of the energy function

Adaptive Bulk Search: SolvingQuadratic Unconstrained Binary Optimization Problems on Multiple GPUs Conference’17, July 2017, Washington, DC, USA

𝑇 𝑇 𝑇

target buffer

solution buffer

iteration i iteration i + 1 iteration i + 2 time

straight search local search

B
<latexit sha1_base64="rCx6YZKyFarkehd6/kmCVau7Ixc=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buqNx6ua81WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHcyGRXA==</latexit> B

<latexit sha1_base64="rCx6YZKyFarkehd6/kmCVau7Ixc=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buqNx6ua81WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHcyGRXA==</latexit>

B
<latexit sha1_base64="rCx6YZKyFarkehd6/kmCVau7Ixc=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GWpG5cV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLG5tb2Tnm3srd/cHhUPT7pGpVqyjpUCaX7ITFMcMk6wEGwfqIZiUPBeuH0Lvd7T0wbruQjzBIWxGQsecQpASv5g5jAhBKRtebDas2tuwvgdeIVpIYKtIfVr8FI0TRmEqggxviem0CQEQ2cCjavDFLDEkKnZMx8SyWJmQmyReQ5vrDKCEdK2ycBL9TfGxmJjZnFoZ3MI5pVLxf/8/wUotsg4zJJgUm6/ChKBQaF8/vxiGtGQcwsIVRzmxXTCdGEgm2pYkvwVk9eJ91G3buqNx6ua81WUUcZnaFzdIk8dIOa6B61UQdRpNAzekVvDjgvzrvzsRwtOcXOKfoD5/MHcyGRXA==</latexit>

best solution Hamming distance

target solution

… …

Figure 4: Iterative search with a straight search and a local search. Note that the iteration i starts with the last solution in the
iteration i − 1, which enables efficient computation of the energy.

Host (CPU)

solution pool

Devices (GPUs)

𝑋!
𝑋"
𝑋#

𝑋$%"

𝐸(𝑋!)
𝐸(𝑋")

𝐸(𝑋#)

𝐸(𝑋$%")

… …

E(X0) < E(X1) < · · · < E(Xm�1)
<latexit sha1_base64="c3RHiNsvBS1kz9kXgbDCxMqAzf8=">AAACCnicbVC7TsMwFHV4lvIKMLIYKqR2oEoKEgwdKhASY5HoQ2qjyHHc1qoTR7aDVEWdWfgVFgYQYuUL2PgbnDQDtBzJ8vE59+r6Hi9iVCrL+jaWlldW19YLG8XNre2dXXNvvy15LDBpYc646HpIEkZD0lJUMdKNBEGBx0jHG1+nfueBCEl5eK8mEXECNAzpgGKktOSaRzflrmtV6ullV+qwj32uJMzeSXBqTyuuWbKqVga4SOyclECOpmt+9X2O44CECjMkZc+2IuUkSCiKGZkW+7EkEcJjNCQ9TUMUEOkk2SpTeKIVHw640CdUMFN/dyQokHISeLoyQGok571U/M/rxWpw6SQ0jGJFQjwbNIgZVBymuUCfCoIVm2iCsKD6rxCPkEBY6fSKOgR7fuVF0q5V7bNq7e681LjK4yiAQ3AMysAGF6ABbkETtAAGj+AZvII348l4Md6Nj1npkpH3HIA/MD5/ADayl3E=</latexit>

GA

target buffer

solution buffer

CUDA block

𝐶 𝑇 𝐶′

straight search local search

…
CUDA block

CUDA block

…

variables

initial values:

CUDA block

CUDA block

…

X = 00 · · · 0, EX = 0
<latexit sha1_base64="w9SoXoRS9KC7TCGD78Aaj9fpCsQ=">AAACHXicbVDLSgMxFM3UV62vUZdugkVwISVTC7opFEVwWcE+oFNKJpNpQzMPkoxQhvkRN/6KGxeKuHAj/o2ZdpDaeiBwOOdccu9xIs6kQujbKKysrq1vFDdLW9s7u3vm/kFbhrEgtEVCHoqugyXlLKAtxRSn3UhQ7DucdpzxdeZ3HqiQLAzu1SSifR8PA+YxgpWWBmbN9rEaEcyTblpHyCZuqCQ6g7/yTTpI5jIprEM0MMuogqaAy8TKSRnkaA7MT9sNSezTQBGOpexZKFL9BAvFCKdpyY4ljTAZ4yHtaRpgn8p+Mr0uhSdacaEXCv0CBafq/ESCfSknvqOT2Z5y0cvE/7xerLzLfsKCKFY0ILOPvJhDFcKsKugyQYniE00wEUzvCskIC0yULrSkS7AWT14m7WrFOq9U72rlxlVeRxEcgWNwCixwARrgFjRBCxDwCJ7BK3gznowX4934mEULRj5zCP7A+PoB7hOhzA==</latexit>

Di = Wii
<latexit sha1_base64="9U9wVN/aFmh0qqhY8o7wzRGeZDk=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiuCpJFXQjFHXhsoJ9QBvCZDpph04ezEyEErPwV9y4UMStv+HOv3HSZqGtBwYO59zLPXO8mDOpLOvbKC0tr6yuldcrG5tb2zvm7l5bRokgtEUiHomuhyXlLKQtxRSn3VhQHHicdrzxde53HqiQLArv1SSmToCHIfMZwUpLrnnQD7AaEczTm8xl6BJ13JSxzDWrVs2aAi0SuyBVKNB0za/+ICJJQENFOJayZ1uxclIsFCOcZpV+ImmMyRgPaU/TEAdUOuk0f4aOtTJAfiT0CxWaqr83UhxIOQk8PZmnlfNeLv7n9RLlXzgpC+NE0ZDMDvkJRypCeRlowAQlik80wUQwnRWRERaYKF1ZRZdgz395kbTrNfu0Vr87qzauijrKcAhHcAI2nEMDbqEJLSDwCM/wCm/Gk/FivBsfs9GSUezswx8Ynz9+bpXC</latexit>

B = 00 · · · 0, EB = 0
<latexit sha1_base64="FfND2xiitS+X/cVURFcNiQ+Zr2o=">AAACHnicbVDLSgMxFM34rPU16tJNsAgupGSqoptCqQguK9gHdIaSSdM2NJMZkoxQhvkSN/6KGxeKCK70b0zbQWrrgcDhnHPJvcePOFMaoW9raXlldW09t5Hf3Nre2bX39hsqjCWhdRLyULZ8rChngtY105y2Iklx4HPa9IfXY7/5QKViobjXo4h6Ae4L1mMEayN17As3wHpAME+qKSxDhFzSDbWC6BT+OjdpJ5mJpWXUsQuoiCaAi8TJSAFkqHXsT7cbkjigQhOOlWo7KNJegqVmhNM078aKRpgMcZ+2DRU4oMpLJuel8NgoXdgLpXlCw4k6O5HgQKlR4JvkeEs1743F/7x2rHtXXsJEFGsqyPSjXsyhDuG4K9hlkhLNR4ZgIpnZFZIBlpho02jelODMn7xIGqWic1Ys3Z0XKtWsjhw4BEfgBDjgElTALaiBOiDgETyDV/BmPVkv1rv1MY0uWdnMAfgD6+sH9lqhyg==</latexit>

X , EX :
<latexit sha1_base64="rRVV/XPQ1cFa4cqLOpXgEat+tJI=">AAACEHicbVDLSsNAFL3xWesr6tLNYBFdSEmqoLgqiuCygn1AG8JkOm2HTh7MTIQS8glu/BU3LhRx69Kdf+OkDVJbDwycOede7r3HiziTyrK+jYXFpeWV1cJacX1jc2vb3NltyDAWhNZJyEPR8rCknAW0rpjitBUJin2P06Y3vM785gMVkoXBvRpF1PFxP2A9RrDSkmsedXysBgTzpJWeoN/PTeomU0566Zolq2yNgeaJnZMS5Ki55lenG5LYp4EiHEvZtq1IOQkWihFO02InljTCZIj7tK1pgH0qnWR8UIoOtdJFvVDoFyg0Vqc7EuxLOfI9XZktKWe9TPzPa8eqd+EkLIhiRQMyGdSLOVIhytJBXSYoUXykCSaC6V0RGWCBidIZFnUI9uzJ86RRKdun5crdWal6lcdRgH04gGOw4RyqcAs1qAOBR3iGV3gznowX4934mJQuGHnPHvyB8fkDlT6dkQ==</latexit>

B, EB :
<latexit sha1_base64="q4+fIEo+e+H7u+wjNtk10qA1+z4=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0ISWpguKqVASXFewD2hAm00k7dDIJMxOhhHyCG3/FjQtF3Lp05984aYPU1gMDZ865l3vv8SJGpbKsb6OwtLyyulZcL21sbm3vmLt7LRnGApMmDlkoOh6ShFFOmooqRjqRICjwGGl7o+vMbz8QIWnI79U4Ik6ABpz6FCOlJdc87gVIDTFiST09hb+fm9RNZpz0yjXLVsWaAC4SOydlkKPhml+9fojjgHCFGZKya1uRchIkFMWMpKVeLEmE8AgNSFdTjgIinWRyUAqPtNKHfij04wpO1NmOBAVSjgNPV2ZLynkvE//zurHyL52E8ihWhOPpID9mUIUwSwf2qSBYsbEmCAuqd4V4iATCSmdY0iHY8ycvkla1Yp9Vqnfn5Vo9j6MIDsAhOAE2uAA1cAsaoAkweATP4BW8GU/Gi/FufExLC0besw/+wPj8AU/OnWU=</latexit>

current solution and its energy

the best solution and its energy

𝑇

𝑇

B, EB
<latexit sha1_base64="IhAh42v3oeyRm9Ot+Yu1lfnEums=">AAACD3icbVDLSsNAFL3xWesr6tLNYFFcSEmqoMtSEVxWsA9oQ5lMJ+3QyYOZiVBC/sCNv+LGhSJu3brzb5y0QWrrgYEz59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/tNGcaC0AYJeSjaLpaUs4A2FFOctiNBse9y2nJH15nfeqBCsjC4V+OIOj4eBMxjBCst9cyTro/VkGCe1NIz9Pu5SXvJjJP2zJJVtiZAi8TOSQly1HvmV7cfktingSIcS9mxrUg5CRaKEU7TYjeWNMJkhAe0o2mAfSqdZHJPio610kdeKPQLFJqosx0J9qUc+66uzHaU814m/ud1YuVdOQkLoljRgEwHeTFHKkRZOKjPBCWKjzXBRDC9KyJDLDBROsKiDsGeP3mRNCtl+7xcubsoVWt5HAU4hCM4BRsuoQq3UIcGEHiEZ3iFN+PJeDHejY9p6ZKR9xzAHxifP8OUnSE=</latexit>

B, EB
<latexit sha1_base64="IhAh42v3oeyRm9Ot+Yu1lfnEums=">AAACD3icbVDLSsNAFL3xWesr6tLNYFFcSEmqoMtSEVxWsA9oQ5lMJ+3QyYOZiVBC/sCNv+LGhSJu3brzb5y0QWrrgYEz59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/tNGcaC0AYJeSjaLpaUs4A2FFOctiNBse9y2nJH15nfeqBCsjC4V+OIOj4eBMxjBCst9cyTro/VkGCe1NIz9Pu5SXvJjJP2zJJVtiZAi8TOSQly1HvmV7cfktingSIcS9mxrUg5CRaKEU7TYjeWNMJkhAe0o2mAfSqdZHJPio610kdeKPQLFJqosx0J9qUc+66uzHaU814m/ud1YuVdOQkLoljRgEwHeTFHKkRZOKjPBCWKjzXBRDC9KyJDLDBROsKiDsGeP3mRNCtl+7xcubsoVWt5HAU4hCM4BRsuoQq3UIcGEHiEZ3iFN+PJeDHejY9p6ZKR9xzAHxifP8OUnSE=</latexit>

Di : �i(X) for all i (0  i < n)
<latexit sha1_base64="in3Z7H8FfLFSG6R4jDxheGpSeG0=">AAACNHicbVBdSxtBFJ3Vttpoa7SPfRkahPgSdm1BER/E5qHQlxQaDWTDcndyo0NmZ9eZu2JYNv/Jl/6QvojQh5biq7+hk7gUvw4MHM65l7nnxJmSlnz/2ltYfPHy1dLy69rK6pu3a/X1jSOb5kZgV6QqNb0YLCqpsUuSFPYyg5DECo/j8eeZf3yOxspUf6dJhoMETrQcSQHkpKj+NUyATgWool1Gco+HbVQEkWz+13vlFg8JL6iYjlIzBaWmpayEsumHCs+45Ptcb0X1ht/y5+BPSVCRBqvQieo/w2Eq8gQ1CQXW9gM/o0EBhqRQWNbC3GIGYgwn2HdUQ4J2UMxDl3zTKUPuTnJPE5+r9zcKSKydJLGbnEWxj72Z+JzXz2m0OyikznJCLe4+GuWKU8pnDfKhNChITRwBYaS7lYtTMCDI9VxzJQSPIz8lR9ut4GNr+9unxsFhVccye88+sCYL2A47YF9Yh3WZYJfsiv1mf7wf3i/vr3dzN7rgVTvv2AN4t/8Aafmr2w==</latexit>

Figure 5: An overview of our proposed system consisting of a CPU and multiple GPUs.

E(X0), E(X1), . . ., E(Xm−1). They are kept distinct from each other

and sorted to be E(X0)< E(X1)< · · · < E(Xm−1).
The operations of the host consist of the following steps.

Step 1: Initialize the solution pool and the target buffer.

Step 2: Wait for new solutions stored by GPU.

Step 3: If new solutions have been stored, insert them to the solu-

tion pool.

Step 4: Generate and store new target solutions, and go back to

Step 2.

In Step 1, the solutions are initially set to be random bit vectors,

and the energy values are +∞ in the sense that they are not com-

puted. In the ABS, a host never computes the energy function. In

Step 2, a host repeatedly reads the value of the global counter by

using cudaMemcpyAsnyc function. Once the value increases, which
means a GPU have stored new solutions to a solution buffer, a

host goes to Step 3. In Step 3, a host inserts new solutions to the

solution pool. As we describe above, the solutions in the solution

pool must be sorted by the value and differ from each other. To

satisfy these conditions, we use binary search, which enables us to

check whether the new solution is in the solution pool and detect

the location to insert in O(logm) time. In Step 4, a host generates

and stores new target solutions by GA. The number of generated

solutions is set to be the same as the number of newly arrived

solutions generated by a device.

3.2 GPU Device
Our method is implemented on a graphics processing unit (GPU)

consisting of multiple streaming multiprocessors. NVIDIA provides

a parallel computing architecture called compute unified device ar-
chitecture (CUDA), which includes a general-purpose computing

platform and programming model [6]. CUDA enables us to access

a virtual instruction set and memories using high-level languages

such as C/C++. CUDA programming model consists of three lay-

ers: threads, blocks, and grids. A block consists of several threads,

and a grid consists of several blocks. A multithreaded program is

Conference’17, July 2017, Washington, DC, USA Ryota Yasudo, Koji Nakano, Yasuaki Ito, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, and Yoko Inaba

partitioned into blocks of threads so that a GPU with more mul-

tiprocessors will automatically execute the program in less time

than a GPU with fewer multiprocessors. We call a block of threads

in terms of CUDA programming model a CUDA block. A GPU can

retain data in three memory locations: a global memory, a shared

memory, and a register file. We store a best solution B and energies

EB and EX in a shared memory and store a current solution X

and ∆i (0 ≤ i < n) in a register file. We implement the ABS on

NVIDIA GeForce RTX 2080 Ti GPU (Turing Architecture, Compute

Capability 7.5) [7] in CUDA C. It has 64-KB shared memory, 1024

threads (32 warps), 64K 32-bit registers per multiprocessor, an 11GB

global memory (GDDR6 SDRAM), and 68 multiprocessors.

Each CUDA block independently executes local searches. Each

thread handles one or more bits of a solution. Let p denote bits per
thread, that is, the number of bits handled by a thread. In a GPU we

use, a CUDA block has at most 1024 threads. Thus p is equal to one

for n-bit QUBO problems, and it exceeds one if n is more than 1024.

A thread has the value of p bits and corresponding values of ∆ (i.e.,

they are stored in a register file). Using a register file, we can update

the energy with low latency. Since each thread has 64 registers, our

system can support up to 32k-bit QUBO problems. As a result, a

thread i performs the computation of ∆ip , ∆ip+1, . . . , ∆ip+p−1. The
total size of data limits the number of warps (a group of 32 threads)

executed in parallel. Our implementation attains 100% occupancy,

i.e., the ratio of the number of resident warps to the maximum

number of warps supported by the hardware.

The operations of a device consist of the following steps.

Step 1: Initialize the variables.
Step 2: Read a target solution T .
Step 3: Reset the best solution B and its energy EB .

Step 4a: Perform a straight search from a current solution C to a

target solution T .
Step 4b: Perform a local search from T to C ′, which corresponds

to C in the next iteration.

Step 5: Store the best solution B found in Step 4 and its energy EB
to the solution buffer, and go back to Step 2.

In Step 1, the variables are initialized as shown in Figure 5. Recall

that starting from a zero vector enables O(1) search efficiency. At

this point, ∆i is set to beWii by accessing the global memory. In

Step 2, a CUDA block reads a target solution T from the target

buffer. In Step 3, the best solution B is reset for avoiding premature

convergence. In Step 4a, a CUDA block performs a straight search

from C to T . Here the number of flips is equal to the Hamming

distance betweenC andT , and thus the execution time varies. This

variation may produce an overhead for synchronization between

CUDA blocks, but it is avoided because each CUDA block operates

asynchronously. In Step 4b, a CUDA block performs an arbitrary

local search from T with the fixed number of flips. The resulting

solution C ′ corresponds to C in the next iteration, and hence the

search efficiency remains O(1). In Step 5, a CUDA block stores the

best solution B found in Step 3 and its energy EB to the solution

buffer. Since the best solution is reset in Step 2, the already stored

solution is ignored, and hence various solutions can be stored.

4 EXPERIMENTAL RESULTS
This section provides our experimental results and discussion. We

evaluate our ABS in terms of two metrics: the time-to-solution and

the search rate. For each parameter, we show the average in ten

times of measurement. Time-to-solution denotes the time to obtain

a target solution, which is typically the exact solution or the best-

known solution. The search rate is the number of total solutions

searched by a system per second, which is used in [22]. Our ABS is

implemented on a multi-GPU system consisting of four NVIDIA

GeForce RTX 2080 Ti GPUs and an 18-core Intel Core i9-9980XE

CPU (3.00 GHz).

4.1 Benchmarks
Our proposed system is evaluated for QUBO problems with up to

32k spins and 16-bit weights. We use the following three bench-

marks for QUBO, including easy and hard instances.

4.1.1 Max-Cut problem. The Max-Cut problem is one of Karp’s

21 NP-complete problems, a problem of finding a maximum cut

in a graph. It is known that the Max-Cut problem is equivalent

to solving Ising models: a spin and an interaction correspond to a

vertex and a weight of an edge in a graph, respectively.

TheMax-Cut can be formulated by QUBO as follows. Let a vertex

in a graph correspond to a bit xi in QUBO and divide the vertices

into two groups by their values (0 or 1). We set weights by

Wi j =

{
Gi j if i , j,

−
∑
0≤k<n Gik if i = j,

(17)

whereGi j (= G ji) denotes a weight between vertex i and vertex j in
an original graph. Obviously,Wii is the negation of the degree of

a vertex i andWi j (i , j) is the edge weight between two vertices

i and j. Let V0 and V1 be the set of a vertex i such that xi = 0 and

xi = 1, respectively. By the values ofWii , the negation of the energy

includes the sum of weights from the vertices in V1. They include

the weights between a vertex in V1 and that in V0, and the weights

between two vertices in V1. The latter weights are subtracted by

Wi j+Wji = 2Gi j , and consequently the cut weights remain. Figure 6

shows an example of QUBO formulation of the Max-Cut. In the

figure, the edge weights of an original graph are one. The Max-Cut

is widely used as a benchmark for QUBO solvers [13, 15, 25]. In

particular, G-set benchmark [31] is commonly used, and we also

adopt it.

4.1.2 TSP. The traveling salesman problem (TSP) is a well-known

NP-hard problem in combinatorial optimization. It is reported that c-
city TSP can be converted into a (c−1)2-bit QUBO problem [21], and

we convert some symmetric TSPs obtained from traveling salesman

problem library (TSPLIB) [24, 27] into QUBO problems. Figure 7

illustrates an example of TSP represented by QUBO formulation.

When we arrange a solution of TSP QUBO in a matrix, a column

and a row denote the order and the city, respectively. A city i is
visited in the j-th order if a bit in the column j and the row i is one.
A solution is hence valid only if each row and each column has

exactly one bit whose value is 1. To guarantee this condition, we add

penalties whose value is twice as much as the maximum distance.

Hence, the Hamming distance of two different solutions is at least

four, and four bit-flips are needed to obtain a valid different solution

Adaptive Bulk Search: SolvingQuadratic Unconstrained Binary Optimization Problems on Multiple GPUs Conference’17, July 2017, Washington, DC, USA

1

3

0

2

4

X = 01001
<latexit sha1_base64="LaBEG7Vgu4ZZLXCV4kFwkpVsnj4=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU0mqoBeh6MVjBfsB7VKyabYNzWaXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxIpjMX42yusrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTSus5J1EcxoFkreD8d3Mbz9xbUSsHu0k4X5Eh0qEglHrpHbnBhOMSb9cwVU8B1olJCcVyNHol796g5ilEVeWSWpMl+DE+hnVVjDJp6VeanhC2ZgOeddRRSNu/Gx+7hSdOWWAwli7UhbN1d8TGY2MmUSB64yoHZllbyb+53VTG177mVBJarlii0VhKpGN0ex3NBCaMysnjlCmhbsVsRHVlFmXUMmFQJZfXiWtWpVcVGsPl5X6bR5HEU7gFM6BwBXU4R4a0AQGY3iGV3jzEu/Fe/c+Fq0FL585hj/wPn8AZQqOSw==</latexit>

−2 1 0 1 0

1 −3 1 1 0

0 1 −2 0 1

1 1 0 −3 1

0 0 1 1 −2

E(X) = �5
<latexit sha1_base64="BpIIGXTHclG75jEmfSQPGd+1fkA=">AAAB7nicbVBNSwMxEJ31s9avqkcvwSLUg2W3KnoRiiJ4rGA/oF1KNs22odlsSLJCWfojvHhQxKu/x5v/xrTdg7Y+GHi8N8PMvEBypo3rfjtLyyura+u5jfzm1vbObmFvv6HjRBFaJzGPVSvAmnImaN0ww2lLKoqjgNNmMLyd+M0nqjSLxaMZSepHuC9YyAg2VmrelVon16cX3ULRLbtToEXiZaQIGWrdwlenF5MkosIQjrVue640foqVYYTTcb6TaCoxGeI+bVsqcES1n07PHaNjq/RQGCtbwqCp+nsixZHWoyiwnRE2Az3vTcT/vHZiwis/ZUImhgoyWxQmHJkYTX5HPaYoMXxkCSaK2VsRGWCFibEJ5W0I3vzLi6RRKXtn5crDebF6k8WRg0M4ghJ4cAlVuIca1IHAEJ7hFd4c6bw4787HrHXJyWYO4A+czx9t5o5R</latexit>

1

3

0

2

4

weight matrix W original graph

0 1 2 3 4

0

1

2

3

4

solution

vertex

edge

Figure 6: An example of Max-Cut formulated by QUBO.

city

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

vi
si

t o
rd

er

E

A
C

B
D

X = 0010010000011000
<latexit sha1_base64="vyIqXG65a8L3xM2BN4FSU9jWisg=">AAAB+3icbVC7TsMwFL0pr1JeoYwsFhUSU5UUJFiQKlgYi0QfUhtVjuu0Vh0nsh1EFfVXWBhAiJUfYeNvcNIM0HJky8fn3CtfHz/mTGnH+bZKa+sbm1vl7crO7t7+gX1Y7agokYS2ScQj2fOxopwJ2tZMc9qLJcWhz2nXn95mfveRSsUi8aBnMfVCPBYsYARrIw3tau/acdx8GbjZMbRrTj2/OmiVuAWpQYHW0P4ajCKShFRowrFSfdeJtZdiqRnhdF4ZJIrGmEzxmPYNFTikykvz2efo1CgjFETSbKFRrv7uSHGo1Cz0TWWI9UQte5n4n9dPdHDlpUzEiaaCLB4KEo50hLIg0IhJSjSfGYKJZGZWRCZYYqJNXBUTgrv85VXSadTd83rj/qLWvCniKMMxnMAZuHAJTbiDFrSBwBM8wyu8WXPrxXq3PhalJavoOYI/sD5/ALKPkPw=</latexit>

A B C D

1

2

3

4

solution

city

Figure 7: An example of a solution of 5-city TSP formulated
by QUBO. Note that the visit order of city E is omitted for
reducing the number of bits.

when a local search is used. In general, TSP QUBO problems are

thus hard QUBO instances.

4.1.3 Synthetic random problems. A synthetic random problem is

a QUBO problem such that all of the weights inW is randomly set

in 16 bits, i.e.,Wi j ∈ [−32768, 32767]. While the optimal solution is

unknown, heuristic methods obtain a certain solution. In contrast

with TSP, generated weight matrices are essentially dense, and in

general they are easy problems.

1 2 3 4
Number of GPUs

0.2

0.4

0.6

0.8

1.0

1.2

S
ea

rc
h

ra
te

 (T
/s

)

1k bits
4k bits

Figure 8: Scaling of the search ratewhen increasing the num-
ber of GPUs.

4.2 Time-to-solution
Table 1 summarizes the results of time-to-solution. Target values are

regarded as the best-known solution or those of close to it. Table 1

(a) shows the results of the Max-Cut, including various graphs with

800–10000 vertices. The results show that our ABS provides the

exact solution for an 800-bit problem and 95%-accurate solutions

for up to 10000-bit problems within one second. G-set includes two

types of graphs in terms of weights. Intuitively, weighted graphs

are harder to solve than unweighted graphs, and it takes much time.

Table 1 (b) shows the results of TSPLIB. Our ABS provides the

best-known solutions for problems of less than 1k bits. When the

number of bits exceeds 1k, problems rapidly becomes hard, and

thus we target solutions with 10% more values than best-known

ones. In particular, it takes about six seconds to solve berlin52. This

result suggests the hardness of TSP.

Table 1 (c) shows the results of synthetic random problems. Since

these problems are randomly generated, we compute good solutions

by repeating searches until convergence and regard them as best-

known solutions. The results show that our ABS quickly finds good

solutions for problems with 1k–32k bits.

4.3 Throughput
Table 2 shows the results of search rate for synthetic random prob-

lems with various bits per thread. Bits per thread determines the

number of threads in a CUDA block and the number of active CUDA

blocks in a GPU, and consequently the execution time change. For

example, if the number of bits per thread increases, sequential pro-

cessing in each thread increases. On the other hand, computing

the minimum value between threads takes less time. The number

of active blocks is automatically selected so that the occupancy

becomes 100%. The search rate denotes the number of evaluated

solutions per unit time introduced in [22]. The results show that our

ABS attains at most 1.24T solutions search per second. It is about 60

times faster than FPGA-based QUBO solver reported in [22] with

the same bit size. As shown in Figure 8, the search rate linearly

increases with the number of GPUS, and thus our ABS is scalable.

Lastly, Table 3 compares our ABS and existing systems. As shown

in the table, our ABS supports a large number of bits and provides

high search rate and various benchmark results. A GPU implemen-

tation of the simulating adiabatic bifurcations [13] supports the

maximum number of bits because spins are divided into eight GPUs,

Conference’17, July 2017, Washington, DC, USA Ryota Yasudo, Koji Nakano, Yasuaki Ito, Masaru Tatekawa, Ryota Katsuki, Takashi Yazane, and Yoko Inaba

Table 1: Results of time-to-solution.

(a) Max-Cut from G-set

Graph # Bits (vertices) Type Edge weight Target value Time (s)
G1 800 random +1 11624 (best-known) 0.0723

G6 800 random ±1 2178 (best-known) 0.106

G22 2000 random +1 13225 (99% of best-known) 0.110

G27 2000 random ±1 3308 (99% of best-known) 0.721

G35 2000 planar +1 7611 (99% of best-known) 0.208

G39 2000 planar ±1 2384 (99% of best-known) 1.89

G55 5000 random +1 9785 (95% of best-known) 0.150

G70 10000 random +1 9112 (95% of best-known) 0.360

(b) TSP from TSPLIB

Problem # Bits Target value Time (s)
ulysses16 225 6859 (best-known) 0.11

bayg29 784 1610 (best-known) 0.69

dantzig42 1681 734 (best-known +5%) 1.25

berlin52 2601 7919 (best-known +5%) 1.79

st70 4621 742 (best-known + 10%) 4.19

(c) Synthetic random problems

Bits Target energy Time (s)
1024 -182208337 (best-known) 0.0172

2048 -518114192 (best-known) 0.0413

4096 -1466369859 (best-known) 1.04

16384 -11631426556 (99% of best-known) 0.417

32768 -33115098990 (99% of best-known) 1.79

Table 2: Throughput results for synthetic random problems with 100% of occupancy.

Bits Bits per thread # Threads/block # Active blocks/GPU Search rate (T/s)
1 1024 68 0.221

2 512 136 0.480

1k 4 256 272 0.924

8 128 544 1.12

16 64 1088 1.24
2 1024 68 0.304

4 512 136 0.564

2k 8 128 272 0.821

16 64 544 1.01
32 32 1088 0.807

4 1024 68 0.407

4k 8 512 136 0.590

16 256 272 0.732
32 128 544 0.495

8 1024 68 0.421

8k 16 512 136 0.537
32 256 272 0.427

16k 16 1024 68 0.578
32 512 136 0.513

32k 32 1024 68 0.439

each of which performs searches for 13,100 spins. In contrast, each

GPU in our ABS independently performs local searches for all of

the spins, which increases the search rate.

5 CONCLUSIONS
In this paper, we have proposed the adaptive bulk search (ABS), a
framework for solving quadratic unconstrained binary optimization

(QUBO) problems, which is equivalent to solving fully-connected

Ising models. ABS consists of a CPU host and GPU devices and they

asynchronously perform a genetic algorithm and local searches

in parallel. For GPUs, we have proposed an efficient algorithm to

compute the energy function using difference computation com-

bined with genetic algorithm and a straight search. Combining

their algorithms enables us to search a large number of various

solutions with O(1) search efficiency, i.e., O(1) computational costs

for evaluating one solution.

Adaptive Bulk Search: SolvingQuadratic Unconstrained Binary Optimization Problems on Multiple GPUs Conference’17, July 2017, Washington, DC, USA

Table 3: Comparison between our system and main existing systems.

D-Wave Ref. [22] Ref. [29] Ref. [13] Our ABS
Number of bits 2,048 1,024 4,096 100,000 32,768

Connection Chimera graph fully-connected fully-connected fully-connected fully-connected

Search rate N/A 20.4G N/A N/A 1.24T

Benchmark N/A TSP Random Max-Cut Random Max-Cut G-set Max-Cut, TSPLIB,

16-bit synthetic random

Technology D-Wave 2000Q Intel Arria 10 GX Intel Arria 10 GX1150 NVIDIA Tesla NVIDIA GeForce

FPGA FPGA V100-SXM2 GPU ×8 RTX 2080 Ti GPU ×4

We have implemented our ABS on a multi-GPU system with

four GPUs. Our ABS with NVIDIA GeForce RTX 2080 Ti GPU sup-

ports QUBO problems with up to 32k variables and 16-bit weights.

Our experimental results show that our ABS solves Max-Cut, TSP,

and synthetic random problems. The results also show that our

ABS implementation attains up to 1.24T search rate, which is 60×

faster than the existing system, due to our efficient algorithms and

high parallelism of multi-GPUs (at most 1088 × 4 = 4352 CUDA

blocks perform searches in parallel). Since our ABS is scalable, more

powerful systems would attain higher performance.

Future work will focus on applying our ABS to other applica-

tions and hardware. By studying a specific application, tailored

algorithms for each application can be designed. As suggested in

our results, the hardness of QUBO instances depends on the applica-

tions. Alternatively, an application-agnostic universal QUBO solver

can be considered. To this end, each CUDA block would perform

different algorithms and possibly they are changed automatically.

ACKNOWLEDGMENTS
The authors are grateful to Makoto Motoka for collaboration on

the early stages of this work.

REFERENCES
[1] Mohammad H Amin. 2015. Searching for quantum speedup in quasistatic quan-

tum annealers. Physical Review A 92, 5 (2015), 1–5.

[2] Frank Arute et al. 2019. Quantum supremacy using a programmable supercon-

ducting processor. Nature 574, 7779 (2019), 505–510.
[3] Demian A Battaglia, Giuseppe E Santoro, and Erio Tosatti. 2005. Optimization by

quantum annealing: Lessons from hard satisfiability problems. Physical Review E
71, 6 (2005), 066707.

[4] Paul Benioff. 1980. The computer as a physical system: A microscopic quantum

mechanical Hamiltonian model of computers as represented by Turing machines.

Journal of statistical physics 22, 5 (1980), 563–591.
[5] Jun Cai, William G Macready, and Aidan Roy. 2014. A practical heuristic for

finding graph minors. arXiv preprint arXiv:1406.2741 (2014).
[6] NVIDIA Corporation. 2019. CUDA C++ programming guide (version 10.2).
[7] NVIDIA Corporation. 2020. NVIDIA Turing GPU architecture. https://www.

nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/

turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[8] Daniel Crawford, Anna Levit, Navid Ghadermarzy, Jaspreet S Oberoi, and Pooya

Ronagh. 2016. Reinforcement learning using quantum Boltzmann machines.

arXiv preprint arXiv:1612.05695 (2016).
[9] Vincent Dumoulin, Ian J Goodfellow, Aaron Courville, and Yoshua Bengio. 2014.

On the challenges of physical implementations of RBMs. In Twenty-Eighth AAAI
Conference on Artificial Intelligence.

[10] David J Earl and Michael W Deem. 2005. Parallel tempering: Theory, applications,

and new perspectives. Physical Chemistry Chemical Physics 7, 23 (2005), 3910–
3916.

[11] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 2000. Quan-

tum computation by adiabatic evolution. arXiv preprint quant-ph/0001106 (2000).
[12] Gary Kochenberger, and Jin-Kao Hao and Fred Glover and Mark Lewis and

Zhipeng Lü and Haibo Wang and Yang Wang. 2014. The unconstrained binary

quadratic programming problem: a survey. Journal of Combinatorial Optimization
28, 1 (2014), 58–81.

[13] Hayato Goto, Kosuke Tatsumura, and Alexander R. Dixon. 2019. Combinato-

rial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian

systems. Science advances 5, 4 (2019).
[14] Laszlo Gyongyosi and Sandor Imre. 2019. A survey on quantum computing

technology. Computer Science Review 31 (2019), 51–71.

[15] Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei

Tamate, Toshimori Honjo, Alireza Marandi, Peter L. McMahon, Takeshi Umeki,

Koji Enbutsu, Osamu Tadanaga, Hirokazu Takenouchi, Kazuyuki Aihara, Ken

ichi Kawarabayashi, Kyo Inoue, Shoko Utsunomiya, and Hiroki Takesue. 2016. A

coherent Ising machine for 2000-node optimization problems. Science 354, 6312
(2016), 603–606.

[16] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R.

Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P.

Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C.

Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G.

Rose. 2011. Quantum annealing with manufactured spins. Nature 473, 7346
(2011), 194–198.

[17] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the

transverse Ising model. Physical Review E 58, 5 (1998), 5355.

[18] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by

simulated annealing. Science 220, 4598 (1983), 671–680.
[19] Duan Li, X. L. Sun, and C. L. Liu. 2012. An exact solution method for uncon-

strained quadratic 0–1 programming: a geometric approach. Journal of Global
Optimization 52, 4 (2012), 797–829.

[20] Bas Lodewijks. 2019. Mapping NP-hard and NP-complete optimisation prob-

lems to Quadratic Unconstrained Binary Optimisation problems. arXiv preprint
arXiv:1911.08043 (2019).

[21] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in
Physics 2 (2014), 5.

[22] Satoshi Matsubara, Hirotaka Tamura, Motomu Takatsu, Danny Yoo, Behraz

Vatankhahghadim, Hironobu Yamasaki, Toshiyuki Miyazawa, Sanroku

Tsukamoto, Yasuhiro Watanabe, Kazuya Takemoto, and Ali Sheikholeslami.

2017. Ising-model optimizer with parallel-trial bit-sieve engine. In Proc. of the
International Conference on Complex, Intelligent, and Software Intensive Systems.
432–438.

[23] Florian Neukart, Gabriele Compostella, Christian Seidel, David Von Dollen, Sheir

Yarkoni, and Bob Parney. 2017. Traffic flow optimization using a quantum

annealer. Frontiers in ICT 4 (2017), 29.

[24] Ruprecht Karl University of Heidelberg. 2020. TSPLIB. http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/.

[25] Takuya Okuyama, Tomohiro Sonobe, Ken ichi Kawarabayashi, and Masanao

Yamaoka. 2019. Binary optimization by momentum annealing. Physical Review E
100, 1 (2019).

[26] Panos M Pardalos and Somesh Jha. 1992. Complexity of Uniqueness and Local

Search in Quadratic 0-1 Programming. Oper. Res. Lett. 11, 2 (1992), 119–123.
[27] Gerhard Reinelt. 1991. TSPLIB: A traveling salesman problem library. ORSA

journal on computing 3, 4 (1991), 376–384.

[28] Gili Rosenberg, Poya Haghnegahdar, Phil Goddard, Peter Carr, Kesheng Wu, and

Marcos López De Prado. 2016. Solving the optimal trading trajectory problem

using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing 10,

6 (2016), 1053–1060.

[29] Kosuke Tatsumura, Alexander R. Dixon, and Hayato Goto. 2019. FPGA-Based

Simulated BifurcationMachine. In International Conference on Field Programmable
Logic and Applications (FPL). 59–66.

[30] Masanao Yamaoka, Chihiro Yoshimura, Masato Hayashi, Takuya Okuyama, Hide-

taka Aoki, and Hiroyuki Mizuno. 2015. 20k-spin Ising chip for combinational

optimization problem with CMOS annealing. In IEEE International Solid-State
Circuits Conference (ISSCC). 1–3.

[31] Yinyu Ye. 2020. G-set. https://web.stanford.edu/~yyye/yyye/Gset/.

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://web.stanford.edu/~yyye/yyye/Gset/

	Abstract
	1 Introduction
	2 Algorithms
	2.1 Local search algorithm
	2.2 Genetic algorithm

	3 Implementation
	3.1 CPU Host
	3.2 GPU Device

	4 Experimental results
	4.1 Benchmarks
	4.2 Time-to-solution
	4.3 Throughput

	5 Conclusions
	Acknowledgments
	References

